Parcourir les contenus (132 total)

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 23 p. ; 1947-12-26;
Jean Dieudonné, tout juste rentré du Brésil, y participe. Weil est absent. Les discussions portent tout d'abord sur deux chapitres d'Algèbre : les chapitres IV (polynômes) et V (corps commutatifs). Sont ensuite abordés le Fascicule de résultats et le…

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 12 p. ; 1948-04-13;
Weil participe à ce congrès. On notera l'absence d'Henri Cartan et de Claude Chevalley. Voici le détail des sujets discutés : Corps commutatifs (chapitre V d'algèbre); espaces fonctionnels (chapitre X de topologie générale); dictionnaire de…

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Dixmier, Jacques ; 35 p. ; 1954-06;
§ 1. Espaces triangulables. § 2. Homotopie.
Livre: Topologie algébrique
Sujets : homotopie,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Samuel, Pierre ; 22 p. ;
Appendice 1. Espaces affines. § 1. Définition des espaces affines. § 2. Calcul barycentrique. § 3. Variétés linéaires. § 4. Applications affines. § 5. Orientation. § 6. Géométrie affine sur un corps ordonné. Appendice II. Espaces projectifs. § 1.…
Livre: Algèbre
Sujets : algèbre linéaire, géométrie élémentaire, espaces affines, géométrie affine, géométrie affine sur un corps ordonné, espaces projectifs, géométrie projective,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Samuel, Pierre ; 91 p. ; 1954-05;
§ 1. Idéaux et ensembles algébriques affines. § 2. Ensembles algébriques dans l'espace projectif. § 3. Projections. § 4. Produits. § 5. Intersections d'ensembles algébriques. § 6. Normalisation. § 7. Extension du corps de base, variétés. § 8.…
Livre: Géométrie algébrique

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 48 p. ;
Sommaire et commentaires. Puis rédaction à proprement parler. § 1. Structures et isomorphismes. § 2. Morphismes et structures dérivées. § 3. Applications universelles. Appendice : Critères de transportabilité.
Livre: Théorie des ensembles
Sujets : structures, applications universelles,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Serre, Jean-Pierre ; 43 p. ;
§ 0. Rappel. § 1. Couples adaptés et bien adaptés. § 2. Existence de sections dans certains espaces fibrés. § 3. Espaces fibrés de base B x I admettant un groupe structural. § 4. Espaces fibrés de base B x I sans groupe structural. § 5. Le théorème…
Livre: Topologie générale
Sujets : espaces fibrés,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Samuel, Pierre ; 82 p. ;
Commentaires et sommaire, puis rédaction. § 1. Notion de structure géométrique. § 2. Géométrie projective. § 3. Géométrie affine. § 4. Géométrie affine sur un corps ordonné. Orientation. § 5. Figures en géométrie euclidienne. § 6. Transformations en…
Livre: Algèbre
Sujets : géométrie élémentaire, structure géométrique, espaces projectifs, géométrie projective, espaces affines, géométrie affine, géométrie affine sur un corps ordonné, espaces euclidiens, géométrie euclidienne, corps pythagoriciens, géométrie euclidienne parfaite,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Cartan, Henri ; 18 p. ; 1954-02;
Notations. Définition d'une variété intégrale. Notion d'intégrale première. Transformations infinitésimales d'un système différentiel. Définition d'un système complètement intégrable. Etude d'un système différentiel quelconque. Observations et…
Livre: Variétés différentielles

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Dixmier, Jacques ; 122 p. ; 1954-01;
Sommaire et commentaires. § 1. Définition des algèbres de Lie. § 2. Algèbre enveloppante universelle d'une algèbre de Lie. § 3. Invariants. § 4. Cohomologie des algèbres de Lie. § 5. Algèbres de Lie nilpotentes. § 6. Algèbres de Lie résolubles. § 7.…
Livre: Groupes et algèbres de Lie
Sujets : algèbres de Lie (définition), algèbre enveloppante (d'une algèbre de Lie), cohomologie des algèbres de Lie, algèbres de Lie nilpotentes, algèbres de Lie résolubles, algèbres de Lie algébriques, algèbres de Lie semi-simples et simples, algèbres de Lie réductives,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 75 p. ;
§ 1. Spécialisations. 1. Zéros d'idéaux de polynômes. 2. Spécialisations. 3. Spécialisations et homomorphismes. 4. Spécialisations d'un anneau. 5. Prolongement d'une spécialisation. 6. Spécialisations finies et idéaux premiers. 7. Anneaux de…
Livre: Algèbre commutative
Sujets : spécialisations, valuations,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Dieudonné, Jean ; 83 p. ;
§ 1. Relations d'ordre. Ensembles ordonnés. § 2. Ensembles bien ordonnés. § 3. Ensembles équipotents. Cardinaux. § 4. Entiers naturels. Ensembles finis. § 5. Ensembles infinis. § 6. Ensembles finis et relations d'ordre.
Livre: Théorie des ensembles
Sujets : ensembles ordonnés, ensembles bien ordonnés, puissance (ensembles), nombres cardinaux, entiers naturels, ensembles finis, ensembles dénombrables, ensembles ordonnés finis,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Dieudonné, Jean ; 40 p. ; 1953-09;
Sommaire et commentaires. § 1. Structures et isomorphismes. § 2. Morphismes et structures dérivées. § 3. Applications universelles. Appendice : relations et termes transportables.
Livre: Théorie des ensembles
Sujets : structures, applications universelles,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Chevalley, Claude ; 19 p. ;
§ 1. Transfert d'anneau de base. § 2. Algèbres extérieures.
Livre: Algèbre
Sujets : algèbre multilinéaire, algèbres extérieures,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Samuel, Pierre ; 24 p. ; 1953-09;
§ 1. Anneaux et modules gradués associés. § 2. Topologie et complétion d'anneaux et modules filtrés. § 3. Propriétés des anneaux complets. § 4. Le Vorbereitungssatz [renvoi à l'état 1, p. 24].
Livre: Algèbre commutative
Sujets : anneaux gradués, anneaux (complétions d'),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Chevalley, Claude, Godement, Roger ; 12 p. ;
Cette rédaction comporte quatre pages très sévères de Chevalley au sujet de la rédaction Godement sur les algèbres de Lie semi-simples (rédaction n°174). Viennent ensuite sept pages de réponse de Godement aux objections de Chevalley.
Livre: Groupes et algèbres de Lie
Sujets : algèbres de Lie semi-simples et simples,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Koszul, Jean-Louis ; 28 p. ;
§ A. Dérivations. § B. Degrés en algèbre linéaire. § C. Algèbres tensorielles. § D. Algèbre commutative gauche d'un module gradué. § E. Différentielles des algèbres commutatives.
Livre: Algèbre
Sujets : algèbre multilinéaire, polynômes,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 40 p. ;
Sommaire. § 1. Espaces vectoriels topologiques ; définitions, voisinages. § 2. Applications linéaires et multilinéaires. § 3. Sous-espaces, espaces quotients, espaces produits, etc. § 4. Convexité. § 5. Espaces d’applications linéaires continues. §…
Livre: Espaces vectoriels topologiques
Sujets : fascicule de résultats (espaces vectoriels topologiques),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Chevalley, Claude ; 71 p. ;
Commentaires du rédacteur. Formes quadratiques. § 1. Formes réflexives. § 2. Formes alternées. § 3. Cas où l'anneau de base est un corps. § 3 [4]. Le groupe d'une forme bilinéaire.
Livre: Algèbre
Sujets : formes bilinéaires et quadratiques, groupe d'une forme bilinéaire,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Dieudonné, Jean ; 53 p. ;
Sommaire et commentaires, puis rédaction à proprement parler. § 1. Structures et homomorphismes. § 2. Structures dérivées. Appendice I : Relations structurantes et termes structurants. Appendice II : applications universelles. Le rédacteur ne voit…
Livre: Théorie des ensembles
Sujets : structures, applications universelles,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Eilenberg, Samuel ; 47 p. ;
L'auteur indique que ce rapport s'inspire fortement de l'Homological algebra de Cartan et Eilenberg, qui est sur le point de paraître. La présente rédaction est divisée en trois parties. Une première partie est dévolue aux éléments de base en théorie…
Livre: Topologie algébriqueCatégories, foncteurs, algèbre homologique
Sujets : algèbre homologique,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Dixmier, Jacques ; 98 p. ;
§ 1. Généralités sur les variétés. § 2. Modes de définition des variétés. § 3. Produits de variétés. § 4. Sous-variétés et variétés plongées. § 5. Variétés quotients. § 6. Variétés fibrées. § 7. Exemples de variétés.
Livre: Variétés différentielles
Sujets : variétés différentielles (définitions), variétés différentielles (étude locale),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Dixmier, Jacques ; 11 p. ; 1953-03;
1. Somme hilbertienne externe d'espaces hilbertiens. 2. Somme hilbertienne de sous-espaces orthogonaux d'un espace hilbertien. 3. Familles orthonormales dans un espace hilbertien. 4. Orthonormalisation d'un ensemble de vecteurs d'un espace…
Livre: Espaces vectoriels topologiques
Sujets : espaces de Hilbert,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Godement, Roger ; 82 p. ; 1953;
Partie I. § 1. Vecteurs tangents. § 2. Sous-variétés. § 3. Exemples de groupes de Lie. § 4. Espaces fibrés. § 5. Opérations sur les espaces fibrés. § 6. Algèbres locales associées à une variété. § 7. Les espaces fibrés principaux P^{(m)} (V). § 8.…
Livre: Variétés différentielles
Sujets : espaces fibrés,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Godement, Roger ; 106 p. ;
Première partie : critères de semi-simplicité de Cartan. § 1. Algèbres résolubles et algèbres nilpotentes. § 2. Sous-algèbres de Cartan. § 3. Critères de Cartan.Deuxième partie : structure des algèbres de Lie semi-simples. § 4. Décomposition de g par…
Livre: Groupes et algèbres de Lie
Sujets : algèbres de Lie semi-simples et simples, algèbres de Lie nilpotentes, algèbres de Lie résolubles, sous-algèbres de Cartan, poids et racines (représentations des algèbres de Lie), groupe de Weyl, formes réelles compactes (algèbres de Lie), opérateurs de Casimir,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 62 p. ;
Chapitre III, (fin), état 3, sans titre. Sommaire. § 4. Applications bilinéaires hypocontinues. Chapitre IV, état 7, la dualité dans les espaces vectoriels topologiques. Sommaire. § 1. Topologies faibles. § 2. Ensembles polaires. § 3. Dual d’un…
Livre: Espaces vectoriels topologiques
Sujets : espaces d'applications linéaires, applications bilinéaires hypocontinues, dualité (théorie de la) dans les espaces vectoriels topologiques, ensembles polaires, dualité faible (espaces vectoriels topologiques), dual fort (d'un ensemble localement convexe), espaces réflexifs, espaces de Montel, dualité (espaces de Banach), continuité forte, continuité faible,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 31 p. ;
§ 3. Correspondances. 1. Graphes et correspondances. 2. Correspondance réciproque d'une correspondance. 3. Composée de deux correspondances. 4. Fonctions. 5. Définition d'une fonction par un terme. 6. Composée de deux fonctions. 7. Fonctions de deux…
Livre: Théorie des ensembles
Sujets : théorie des ensembles abstraits, fonctions (théorie des ensembles), relations (ensembles),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 73 p. ;
Sommaire et commentaires. § 1. Divisibilité dans un corps de nombres algébriques. § 2. La théorie du corps de classes global : I. la loi de réciprocité. § 3. La théorie du corps de classes global : II. Théorèmes d'existence, applications.
Livre: Arithmétique
Sujets : corps de nombres algébriques, théorie du corps de classes global,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Iwasawa, Kenkichi ; 6 p. ; 1952-04;
Cette rédaction présente une courte synthèse sur les séries L datée d'avril 1952.
Livre: Arithmétique

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 75 p. ;
§ 1. Valeurs absolues et valuations. § 2. Extensions algébriques finies de corps valués. § 3. Extensions galoisiennes de corps valués. § 4. Grand fourbi global : diviseurs, répartitions, idèles. § 5. Différente et discriminant. § 6. Corps de classes…
Livre: Arithmétique
Sujets : valuations, corps valués, idèles, corps de classes local,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Samuel, Pierre ; 75 p. ; 1952-08;
L'auteur précise en commentaire s'être conformé aux décisions du congrès d'octobre 1949. § 1. Relations d'ordre. Ensembles ordonnés. § 2. Ensembles bien ordonnés. Ordinaux. § 3. Ensembles équipotents. Cardinaux. § 4. Entiers naturels. Ensembles…
Livre: Théorie des ensembles
Sujets : ensembles ordonnés, ensembles bien ordonnés, puissance (ensembles), nombres cardinaux, entiers naturels, ensembles finis, ensembles dénombrables, ensembles ordonnés finis,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Chevalley, Claude ; 40 p. ;
§ 1. Espaces fibrés associés à une variété. § 2. Démonstration de la formule de Hausdorff au moyen des groupes de Lie. § 3. Des embryons de sections. § 4. Relèvements canoniques d'une transformation infinitésimale. § 5. Complément aux identifications…
Livre: Groupes et algèbres de Lie
Sujets : espaces fibrés, transformations infinitésimales,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Cartan, Henri ; 83 p. ;
§ 1. Modules. § 2. Modules semi-simples; espaces vectoriels. § 3. Module des applications linéaires de E dans F; dualité. § 4. Produits tensoriels.
Livre: Algèbre
Sujets : algèbre linéaire, modules, modules semi-simples et simples, espaces vectoriels, dualité (modules et espaces vectoriels), produits tensoriels,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Chevalley, Claude ; 203 p. ; 1951-04;
§ 1. Définitions. § 2. Méthodes de définition de variétés. § 3. Différentielles. § 4. Fonctions de classe C^k. § 5. Applications différentiables. § 6. Variétés plongées. § 7. Transformations infinitésimales. § 8. Topologies sur les ensembles F^k (V).…
Livre: Variétés différentielles
Sujets : variétés différentielles (définitions), différentielles, formes différentielles (intégration des),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Koszul, Jean-Louis ; 70 p. ;
§ 1. Algèbres de Lie sur un anneau. Représentations. § 2. Radical, forme bilinéaire associée à un module de représentation. § 3. Algèbres de Lie semi-simples. § 4. Extensions des algèbres de Lie.
Livre: Groupes et algèbres de Lie
Sujets : algèbres de Lie (définition), algèbres de Lie (représentations des), algèbres de Lie semi-simples et simples, algèbre de Lie (extension d'une),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Serre, Jean-Pierre ; 75 p. ;
§ 1. Modules semi-simples. § 2. Radical. Représentations linéaires. § 3. Anneaux d'Artin. § 4. Produits tensoriels d'algèbres semi-simples. § 5. Représentations des groupes. Appendice. Le radical d'une algèbre quelconque.
Livre: Algèbre
Sujets : anneaux primitifs, modules semi-simples et simples, radical d'un anneau, anneaux artiniens, produits tensoriels d'algèbres semi-simples, représentations linéaires des groupes et des algèbres, radical d'une algèbre,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Dieudonné, Jean ; 82 p. ;
§ 1. Faisceaux de germes de fonctions. § 2. Partitions différentiables de l'unité et théorèmes de prolongement ; § 3. Le théorème d'immersion ; § 4. Intégration des formes différentielles.
Livre: Variétés différentielles
Sujets : variétés différentielles (étude globale), formes différentielles (intégration des),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Dieudonné, Jean ; 104 p. ;
§ 1. Différentielle première. § 2. Equations aux différentielles totales. § 3. Fonctions implicites. § 4. Changement de variables dans les intégrales multiples. Appendice : Fonctions implicites au voisinage d'un point singulier.
Livre: Variétés différentielles
Sujets : différentielles,
Formats de sortie

atom, dcmes-xml, json, omeka-xml, rss2