Titre : N°28, Compte rendu du Congrès de la motorisation de l'âne qui trotte, Pelvoux-le-Poet (25 juin-8 juil. 1952)
Identifiant : nbt029
Date : 1952-07-08
Pagination (fichier pdf) : 23 p.
Pagination (document matériel) : Tribu sur 23 pages numérotées de 1 à 23.
Texte dactylographié
Fichier(s)
Catégorie du document : Circulaires, convocations et comptes rendus
Nature du document : La Tribu (1940-1953) - Volume relié ; La Tribu (1940-1953)
Présents : Cartan, Henri ; Chevalley, Claude ; Delsarte, Jean ; Dieudonné, Jean ; Dixmier, Jacques ; Godement, Roger ; Eilenberg, Samuel ; Samuel, Pierre ; Schwartz, Laurent ; Serre, Jean-Pierre ; Weil, André ; Borel, Armand (invité) ; de Rham, Georges (invité) ; Hochschild, Gerhard (invité)
Description
Plan général (Livres I à IX; analyse algébrique; analyse fonctionnelle) et état des rédactions. Les Engagements du congrès concernent Cartan, Chevalley, Delsarte, Dieudonné, Dixmier, Godement, Koszul, Eilenberg, Samuel, Schwartz, Serre et Weil. Les prochains congrès auront lieu en oct. 1952 (Celles) et en fév. 1953. Le programme des séminaires Bourbaki de déc. 1952 et fév. 1953 est présenté. La discussion sur les variétés et les groupes de Lie est constitue "le plat de résistance" du congrès. Détail des sujets discutés : Théorie des ensembles (logique, ensembles, structures). Algèbre. Espaces vectoriels topologiques : chapitre III; chapitre IV (dualité). Plan de l'Analyse algébrique : chapitre I (spécialisations et valuations); chapitre II (noethériens); chapitre III (entiers); chapitre IV (anneaux normaux); chapitre V (algèbre locale élémentaire). Variétés et groupes de Lie : question des notations et des identifications; chapitre I (dépotoire différentiable); chapitre II (dépotoire analytique); chapitre III (faisceaux et sammeaux); chapitre IV (généralités sur les variétés); chapitre V (étude locale des variétés); chapitre VI (transformations infinitésimales); chapitre VII (systèmes différentiels); chapitre VIII (groupes de Lie); chapitre IX (espaces de Lie et espaces à transformations de Lie); chapitre X (connexions); chapitre XI (géométries différentielles); chapitre XII (étude globale sur les variétés); chapitre XIII (courants, distributions, noyaux, régularisation).
Histoire archivistique Ce document est issu du volume relié du journal "La Tribu", initialement conservé dans le fonds ancien de l'Association des Collaborateurs de Nicolas Bourbaki à l'Ecole normale supérieure de Paris. Ce fonds a été déposé en 2007 aux Archives de l'Académie des sciences.
Note : Dans ce numéro de La Tribu est évoquée la création de l'Association des collaborateurs de Nicolas Bourbaki, finalement déclarée en préfecture de Nancy le 30 août 1952, son siège étant localisé au domicile de Jean Delsarte, 4 rue de l'Oratoire à Nancy. Introduite par Pierre Samuel, l'expression "L'âne qui trotte" désigne des passages d'accès facile dans une Rédaction Bourbaki. Laurent Schwartz y fait référence à la page 170 de son autobiographie, publiée en 1997 chez Odile Jacob : « D'autres [parties d'une Rédaction Bourbaki], considérées comme faciles, sont démontrées en avançant tranquillement sans se donner de mal. On les appelle ``l'âne qui trotte''. »
Relations
Bourbaki Ce contenu discute Rédaction n°157. Partie II. Analyse algébrique. Livre I. Algèbre commutative, chapitre II, anneaux noethériens (état 6 au début, état 4 à la fin, état 0 par moments). Ce contenu discute Rédaction n°142. Algèbre commutative, chapitre III, algèbre locale élémentaire (état 1) Ce contenu discute Rédaction n°158. Spécialisations et valuations (état 3) Ce contenu discute Rédaction n°161. Observations sur l'état 3 des spécialisations et valuations (Chevalley). Contre-observations Weil. Observations sur les observations de Weil sur mes observations (Chevalley) Ce contenu discute Rédaction n°171. Rapport d'algèbre unidimensionnelle. Chapitre II, arithmétique des corps de nombres algébriques Ce contenu discute Rédaction n°171 bis. Rapport d'algèbre unidimensionnelle. Chapitre I, arithmétique des corps valués. Ce contenu discute Rédaction n°167. Groupes et algèbres de Lie. Théorie élémentaire, chapitres I, II et III (Weil). Ce contenu discute Rédaction n°169. Groupes et algèbres de Lie. Complément Chevalley à la rédaction Weil sur les groupes de Lie Ce contenu discute Rédaction n°162. Variétés différentiables. Chapitre I, différentielles (état 3). Ce contenu discute Rédaction n°163. Variétés différentielles. Chapitre IV, étude globale des variétés différentiables (état 2). Ce contenu discute Rédaction n°150. Groupes et algèbres de Lie. Groupes de Lie. Parties 1 et 2. Ce contenu discute Rédaction n°167 bis. Variétés différentielles. Chapitre III, variétés (état 2). Ce contenu discute Rédaction n°160. Ensembles. Chapitre II. (état 6) Ce contenu discute Rédaction n°147. Ensembles. Chapitre I. Description de la mathématique formelle (état 6) Ce contenu discute Rédaction n°137. Ensembles. Chapitre III. Structures (état 5) Ce contenu discute Rédaction n°088. Espaces Vectoriels Topologiques. Chapitres III et IV (état 6). Ce contenu est lié à Bourbaki's Diktat, Congrès oecuménique de Pelvoux (25 juin - 8 juil. 1952)
Citer ce document :
N°28, Compte rendu du Congrès de la motorisation de l'âne qui trotte, Pelvoux-le-Poet (25 juin-8 juil. 1952). , nbt029 , accès le 3/12/2024, https://archives-bourbaki.ahp-numerique.fr/items/show/105
Description
Plan général (Livres I à IX; analyse algébrique; analyse fonctionnelle) et état des rédactions. Les Engagements du congrès concernent Cartan, Chevalley, Delsarte, Dieudonné, Dixmier, Godement, Koszul, Eilenberg, Samuel, Schwartz, Serre et Weil. Les prochains congrès auront lieu en oct. 1952 (Celles) et en fév. 1953. Le programme des séminaires Bourbaki de déc. 1952 et fév. 1953 est présenté. La discussion sur les variétés et les groupes de Lie est constitue "le plat de résistance" du congrès. Détail des sujets discutés : Théorie des ensembles (logique, ensembles, structures). Algèbre. Espaces vectoriels topologiques : chapitre III; chapitre IV (dualité). Plan de l'Analyse algébrique : chapitre I (spécialisations et valuations); chapitre II (noethériens); chapitre III (entiers); chapitre IV (anneaux normaux); chapitre V (algèbre locale élémentaire). Variétés et groupes de Lie : question des notations et des identifications; chapitre I (dépotoire différentiable); chapitre II (dépotoire analytique); chapitre III (faisceaux et sammeaux); chapitre IV (généralités sur les variétés); chapitre V (étude locale des variétés); chapitre VI (transformations infinitésimales); chapitre VII (systèmes différentiels); chapitre VIII (groupes de Lie); chapitre IX (espaces de Lie et espaces à transformations de Lie); chapitre X (connexions); chapitre XI (géométries différentielles); chapitre XII (étude globale sur les variétés); chapitre XIII (courants, distributions, noyaux, régularisation).
Date
1952-07-08
Couverture
1940-1953