Parcourir les contenus (873 total)

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Serre, Jean-Pierre ; 43 p. ;
§ 0. Rappel. § 1. Couples adaptés et bien adaptés. § 2. Existence de sections dans certains espaces fibrés. § 3. Espaces fibrés de base B x I admettant un groupe structural. § 4. Espaces fibrés de base B x I sans groupe structural. § 5. Le théorème…
Livre: Topologie générale
Sujets : espaces fibrés,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Serre, Jean-Pierre ; 75 p. ;
§ 1. Modules semi-simples. § 2. Radical. Représentations linéaires. § 3. Anneaux d'Artin. § 4. Produits tensoriels d'algèbres semi-simples. § 5. Représentations des groupes. Appendice. Le radical d'une algèbre quelconque.
Livre: Algèbre
Sujets : anneaux primitifs, modules semi-simples et simples, radical d'un anneau, anneaux artiniens, produits tensoriels d'algèbres semi-simples, représentations linéaires des groupes et des algèbres, radical d'une algèbre,

Fonds Jean Delsarte (Institut Élie Cartan); Serre, Jean-Pierre ; 23 p. ;
§ 5. Endomorphismes des espaces vectoriels. n°1. Le module associé à un endomorphisme. n°2. Endomorphismes sur un corps de base algébriquement clos. n°3. Valeurs propres et vecteurs propres. n°4. Réduction à la forme diagonale. n°5. Propriétés du…
Livre: Algèbre
Sujets : modules sur les anneaux principaux, endomorphismes des espaces vectoriels,

Fonds Pierre Cartier (Archives Henri Poincaré); Schwartz, Laurent ; 4 p. ; 1965-12;
L'auteur se donne deux espaces vectoriels topologiques E et F qu'il suppose localement convexes et il définit ce qu'il appelle une application holomorphe d'un ouvert U de E dans F. À partir de cette définition, il développe des compléments à son…
Livre: Théories spectrales

Fonds Pierre Cartier (Archives Henri Poincaré); Schwartz, Laurent ; 6 p. ; 1965-03;
Démonstration de la proposition 3 page 9 de la rédaction n°434 : "Si mu est une mesure cylinfrique scalairement S concentrée, et si u est S-Hilbert-Schmidt, alors u(mu) est une mesure de Radon sur F"
Livre: Intégration

Fonds Pierre Cartier (Archives Henri Poincaré); Schwartz, Laurent ; 27 p. ; 1965-02;
§ 1. Mesures sur un espace topologique. § 2. Fonctions intégrables, mesurables. § 3. Mesures images. § 4. Substitution à X^ de n'importe quel espace topologique localement compact. § 5. Produit d'une mesure par une fonction localement intégrable. §…
Livre: Intégration

Fonds Pierre Cartier (Archives Henri Poincaré); Schwartz, Laurent ; 20 p. ; 1965-02;
§ 1. Préliminaires. § 2. Étude en dimension finie. § 3. Passage à la dimension finie. § 4. Le théorème de Minlos. § 5. Rapport avec la transformation de Fourier. § 6. Réciproques du théorème de Minlos.
Livre: Intégration

Fonds Pierre Cartier (Archives Henri Poincaré); Schwartz, Laurent ; 30 p. ; 1964-10;
§ 1. Systèmes principaux. § 2. Systèmes principaux inverses ; couples principaux. § 3. Transports de structures. § 4. Théorie de Galois des revêtements.
Livre: Algèbre

Fonds Pierre Cartier (Archives Henri Poincaré); Schwartz, Laurent ; 51 p. ; 1964-10;
Cette rédaction entend établir qu'il existe "une notion de mesure de Radon sur les espaces topologiques les plus généraux", ces espaces étant supposés complètement réguliers.
Complément n°1. Espaces standards.
Complément n°2. Compléments sur les…
Livre: Intégration

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Schwartz, Laurent ; 7 p. ; 1953-09;
La présente rédaction pose la définition d'une application linéaire complètement continue entre deux espaces vectoriels topologiques. L'auteur démontre ensuite deux théorèmes et trois propositions relatifs à cette notion, en supposant que les espaces…
Livre: Espaces vectoriels topologiques
Sujets : applications linéaires complètement continues,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Schwartz, Laurent ; 9 p. ; 1953-05;
La présente rédaction comporte un théorème et sept propositions portant sur le produit tensoriel d'espaces vectoriels topologiques localement convexes. Les propositions 1 à 6 traitent du produit tensoriel de deux tels espaces et, au fur et à mesure…
Livre: Espaces vectoriels topologiques
Sujets : produit tensoriel topologique d'espaces vectoriels topologiques,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Schwartz, Laurent ; 67 p. ;
Rappel de formules sur les algèbres de Lie.Première partie : passage du local ou du global au ponctuel : groupe de Lie ---> algèbre de Lie. § 1. Définitions. § 2. Variété de transformations. § 3. Champs invariants à gauche sur un groupe de Lie. §…
Livre: Groupes et algèbres de Lie
Sujets : algèbres de Lie (définition), groupes de Lie (représentations des), germe de groupe de Lie, mesure de Haar, algèbre enveloppante (d'une algèbre de Lie), équations différentielles de Maurer-Cartan,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Schwartz, Laurent ; 56 p. ;
Chapitre I. Espaces vectoriels topologiques sur un corps valué. § 1. Espaces vectoriels topologiques. § 2. Variétés linéaires dans un espace vectoriel topologique. § 3. Espaces vectoriels métrisables. Chapitre II. Convexité, ensembles convexes,…
Livre: Espaces vectoriels topologiques
Sujets : fascicule de résultats (espaces vectoriels topologiques),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Schwartz, Laurent ; 48 p. ;
Première partie : Définitions et propriétés générales. Deuxième partie : Eléments infinitésimaux du premier ordre. Troisième partie : produits de variétés. Quatrième partie : fonctions implicites. Cinquième partie : Eléments infinitésimaux d'ordre…
Livre: Variétés différentielles
Sujets : variétés différentielles (définitions), formes différentielles, systèmes différentiels extérieurs (intégration locale des), formes différentielles (intégration des), éléments infinitésimaux,

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 78 p. ; 1966-01;
§ 1. Corps de nombres algébriques. § 2. Entiers d'un corps de nombres. § 3. Valeurs absolues d'un corps de nombres. § 4. Le corps relatif. § 5. Le corps galoisien relatif. § 6. Ordres d'un corps de nombres. § 7. Classes d'idéaux et théorèmes des…
Livre: Algèbre commutativeArithmétique

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 2 p. ; 1965-09;
Démonstration que, selon l’axiome de Grothendieck sur les univers, tout ensemble est artinien.
Livre: Théorie des ensembles

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre, Grothendieck, Alexandre ; 6 p. ; 1965-01-15/21;
Échange épistolaire entre Alexandre Grothendieck et Pierre Samuel au sujet des univers et des galaxies.
Livre: Théorie des ensembles

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 106 p. ; 1964-11;
§ 1. Catégories. § 2. Foncteurs. § 3. Catégories de foncteurs. § 4. Quelques types de foncteurs. Exercices. § 5. Univers. Exercices. § 6. Foncteurs représentables. Exercices.
Livre: Théorie des ensembles

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 30 p. ; 1964-07;
§ 2. Exemples d'algèbres.
Annexe. Algèbres alternatives. Octonions.
Livre: Algèbre

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 24 p. ; 1964-02;
§ 1. Séries de Poincaré des algèbres graduées. § 2. Invariants d'un groupe linéaire fini : propriétés de modules. § 3. Invariants d'un groupe linéaire fini : propriétés d'anneaux. § 4. Éléments antiinvariants. § 5. Cas d'un anneau de base quelconque.…
Livre: Groupes et algèbres de Lie

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 65 p. ; 1964-01;
§ 1. Algèbres étales. § 2. Différente et discriminant. § 3. Exemples.
Livre: Algèbre commutative

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 20 p. ; 1963-09;
§ 7. Invariants symétriques.
Livre: Groupes et algèbres de Lie

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 11 p. ; 1963-09;
§ 1. Rappels sur les anneaux réguliers. § 2. Anneaux gradués réguliers.
Livre: Groupes et algèbres de Lie

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 156 p. ; 1962-05;
§ 1. Résultats préliminaires. § 2. Groupes de Coxeter. § 3. Groupes engendrés par des réflexions. § 4. Systèmes de racines. § 5. Invariants symétriques. § 6. Transformations de Coxeter. § 7. Classification des systèmes de racines.
Livre: Groupes et algèbres de Lie

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 6 p. ; 1961-10;
n°10. Classes de diviseurs.
Livre: Algèbre commutative

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 179 p. ; 1960-06;
Chapitre V. Entiers sur un anneau. § 1. Notion d'élément entier. § 2. Relèvement d'idéaux premiers. § 3. Produits tensoriels d'anneaux intégralement clos. § 4. Applications.
Chapitre VI. Valuations. § 1. Anneaux de valuations. § 2. Places. § 3.…
Livre: Algèbre commutative

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 193 p. ; 1960-06;
Chapitre I. Modules plats. § 1. Diagrammes et suites exactes. § 2. Modules plats. § 3. Modules fidèlement plats. § 4. Modules plats et foncteurs "Tor".
Chapitre II. Localisation. § 1. Notions sur les idéaux. § 2. Anneaux et modules de fractions. §…
Livre: Algèbre commutative

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 9 p. ; 1960-02;
1. Propriétés de finitude. 2. Clôture intégrale d'un anneau gradué
Livre: Algèbre commutative

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 8 p. ; 1959-11;
Théorème d'Ausbaum-Buchslander.
Livre: Algèbre commutative

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 49 p. ; 1959-04;
§ 1. Diagrammes. § 2. Suites exactes. § 3. Définition des modules plats. § 4. Modules plats et relations. § 5. Premières propriétés des modules plats. § 6. Construction de modules plats. § 7. Platitude de modules quotients. § 8. Couples plats. § 9.…
Livre: Algèbre commutative

Fonds Pierre Cartier (Archives Henri Poincaré); Samuel, Pierre ; 5 p. ;
Commentaires sur la rédaction 310
Livre: Intégration

Fonds Jean Delsarte (Institut Élie Cartan); Samuel, Pierre ; 16 p. ; 1958-05;
§ 8. Prolongements d'une valuation à une extension algébrique.
Livre: Algèbre commutative

Fonds Jean Delsarte (Institut Élie Cartan); Samuel, Pierre ; 24 p. ; 1958-05;
§ 2. Donner votre obole pour le relèvement des idéaux entiers. § 3. Produits tensoriels d'anneaux intégralement clos.
Livre: Algèbre commutative

Fonds Jean Delsarte (Institut Élie Cartan); Samuel, Pierre ; 59 p. ; 1957-07;
§ 1. Extensions séparables, régulières et primaires. § 2. Dérivations, différentielles, p-bases. § 3. Ordre d'inséparabilité. § 4. Vecteurs de Witt. Extensions cycliques d'ordre pn
Livre: Algèbre

Fonds Jean Delsarte (Institut Élie Cartan); Samuel, Pierre ; 4 p. ; 1957-04;
Démonstration du théorème sur la dimension d'un anneau local
Livre: Algèbre commutative

Fonds Jean Delsarte (Institut Élie Cartan); Samuel, Pierre ; 55 p. ; 1956-03;
§ 1. Mesure de Haar. § 2. Mesures sur les espaces homogènes. § 3. Produit de convolution.
Livre: Intégration

Fonds Jean Delsarte (Institut Élie Cartan); Samuel, Pierre ; 7 p. ; 1955-12;
Capacité extérieure sur un espace topologique séparé E
Livre: Intégration

Fonds Jean Delsarte (Institut Élie Cartan); Samuel, Pierre ; 145 p. ; 1957-04;
§ 1. Applications bilinéaires et sesquilinéaires. § 2. Discriminant. § 3. Formes hermitiennes et quadratiques. § 4. Sous espaces isotropes. Théorème de Witt. § 5. Propriétés spéciales aux formes bilinéaires alternées. § 6. Propriétés spéciales aux…
Livre: Algèbre

Fonds Jean Delsarte (Institut Élie Cartan); Samuel, Pierre ; 5 p. ; 1956-12;
§ 5. Propriétés spéciales aux formes bilinéaires alternées. 2. Pfaffien.
Livre: Algèbre
Formats de sortie

atom, dcmes-xml, json, omeka-xml, rss2