Algèbre : Contenus (51 total)

Fonds Jean Delsarte (Institut Élie Cartan); 141 p.;
§ 1. Lois de composition internes ; associativité ; commutativité. § 2. Élément neutre ; éléments réguliers ; éléments inversibles. § 3. Lois de composition externes ; structures algébriques. § 4. Groupes ; groupes à opérateurs. § 5. Groupes de…
Livre: Algèbre
Sujets : structures algébriques, lois de composition, groupes, groupes à opérateurs, groupes de transformations, anneaux, anneaux à opérateurs, corps,

Fonds Jean Delsarte (Institut Élie Cartan); Chevalley, Claude, Dieudonné, Jean; 44 p.;
§ 1. Lois de composition reliant deux ensembles. § 2. Lois de composition dans [un ensemble fondamental] γ. § 3. Associativité. § 4. Élément unité. § 5. Éléments inverses. Éléments réguliers. § 6. Groupes. § 7. Commutativité. § 8. Prolongement de…
Livre: Algèbre
Sujets : structures algébriques, lois de composition, groupes, systèmes à composition multiple,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 122 p.;
§ 1. Modules. § 2. Fonctions vectorielles et fonctions linéaires. Matrices. Dualité. § 3. Espaces vectoriels. § 4. Formes multilinéaires, produits tensoriels, tenseurs. Appendice : le théorème d'isomorphie des modules complètement réductibles.
Livre: Algèbre
Sujets : algèbre linéaire, algèbre multilinéaire, modules, matrices, dualité (modules et espaces vectoriels), espaces vectoriels, produits tensoriels, tenseurs,

Fonds Jean Delsarte (Institut Élie Cartan); 52 p.;
§ 1. Modules. § 2. Espace vectoriel par rapport à un corps. § 3. Base, dimension, équations linéaires. § 4. Espace dual, relations de dualité. § 5. Matrices. § 6. Fonctions bilinéaires. § 7. Fonctions multilinéaires.
Livre: Algèbre
Sujets : algèbre linéaire, modules, espaces vectoriels, dualité (modules et espaces vectoriels), matrices, algèbre multilinéaire,

Fonds Jean Delsarte (Institut Élie Cartan); 167 p.;
§ 1. Modules et espaces vectoriels. § 2. Fonctions linéaires. Dualité. § 3. Endomorphismes. § 4. Matrices.§ 5. Produits tensoriels et tenseurs. § 6. Algèbres.Appendice : produit tensoriel de modules quelconques.
Livre: Algèbre
Sujets : algèbre linéaire, algèbre multilinéaire, modules, espaces vectoriels, dualité (modules et espaces vectoriels), produits tensoriels, tenseurs, algèbres,

Fonds Jean Delsarte (Institut Élie Cartan); 116 p.;
§ 1. Modules et espaces vectoriels. § 2. Fonctions linéaires. Dualité. § 3. Matrices sur un anneau. § 4. Algèbres.
Livre: Algèbre
Sujets : algèbre linéaire, modules, espaces vectoriels, dualité (modules et espaces vectoriels), matrices, algèbres,

Fonds Jean Delsarte (Institut Élie Cartan); Chevalley, Claude; 75 p.;
§ 1. Groupes abéliens à opérateurs. § 2. Espaces vectoriels. § 3. Dualité entre espaces vectoriels. § 4. Matrices. § 5. Changement du corps de base
Livre: Algèbre
Sujets : algèbre linéaire, groupes abéliens à opérateurs, espaces vectoriels, dualité (modules et espaces vectoriels), matrices,

Fonds Jean Delsarte (Institut Élie Cartan); 124 p.;
§ 1. Modules. § 2. Applications linéaires. § 3. Structure des espaces vectoriels. § 4. Dualité. § 5. Restriction du corps des scalaires. § 6. Matrices. § 7. Algèbres.
Livre: Algèbre
Sujets : algèbre linéaire, modules, espaces vectoriels, dualité (modules et espaces vectoriels), matrices, algèbres,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 61 p.;
§ 1. Généralités sur les systèmes hypercomplexes. § 2. Exemples de systèmes hypercomplexes. § 3. Algèbre extérieure. § 4. Déterminants.
Livre: Algèbre
Sujets : systèmes hypercomplexes, algèbres, algèbres extérieures, déterminants,

Fonds Jean Delsarte (Institut Élie Cartan); 98 p.;
Le rédacteur précise s'être conformé aux décisions prises lors du Congrès de juin 1945 sur le plan de ce chapitre. § 1. Produits tensoriels et tenseurs. § 2. Produits tensoriels d'algèbres. § 3. Algèbre extérieure. § 4. Déterminants et p-vecteurs…
Livre: Algèbre
Sujets : algèbre multilinéaire, produits tensoriels, tenseurs, algèbres extérieures, déterminants,

Fonds Jean Delsarte (Institut Élie Cartan); 13 p.;
Le rédacteur précise en commentaire s'être inspiré du (premier) appendice au chapitre III (d'algèbre). Voici les paragraphes du présent rapport : T-applications - structure induite ; les applications du produit, exemples ; les problèmes d'immersion,…
Livre: AlgèbreTopologie générale
Sujets : applications universelles, structures, espaces uniformisables, groupes topologiques libres,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 61 p.;
§ 1. Polynômes. § 2. Fonctions polynômes. § 3. Dérivées des polynômes. § 4. Décomposition des fractions rationnelles, interpolation. § 5. Fonctions symétriques.
Livre: Algèbre
Sujets : polynômes, polynôme (fonction), polynôme (dérivée d'une fonction), fractions rationnelles, polynômes symétriques, fractions rationnelles symétriques,

Fonds Jean Delsarte (Institut Élie Cartan); 13 p.;
1. Définition des séries formelles. 2. Ordre d'une série formelle. 3. Séries formelles sur un anneau d'intégrité. 4. Substitution de séries formelles dans une série formelle. 5. Séries formelles inversibles. 6. Corps des fractions de l'anneau des…
Livre: Algèbre
Sujets : polynômes, séries formelles,

Fonds Jean Delsarte (Institut Élie Cartan); Chevalley, Claude; 29 p.;
§ 1. Anneaux sur un corps. n°1 Applications multilinéaires. n°2 Anneaux de monoïdes. § 2. Anneaux de polynômes. n°1 Définition. n°2 Polynômes sur un anneau. n°2 Le degré. n°3 Différentielles et dérivées de polynômes. n°4 Formules de Taylor et de…
Livre: Algèbre
Sujets : polynômes, anneaux de monoïdes, polynôme (fonction), polynôme (différentielle d'une fonction), polynôme (dérivée d'une fonction),

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean ; 141 p.;
Commentaire à l'appendice au chapitre V ainsi qu'au chapitre VI, puis chapitre VI à proprement parler. § 1. Caractéristique, corps premiers. § 2. Extensions simples. Eléments algébriques et éléments transcendants. § 3. Extensions algébriques et…
Livre: Algèbre
Sujets : corps commutatifs, extensions algébriques, extensions transcendantes, extensions galoisiennes, groupes de Galois, racines de l'unité, corps finis, corps ordonnés, extensions algébriques des corps p-adiques, extensions galoisiennes infinies,

Fonds Jean Delsarte (Institut Élie Cartan); Chevalley, Claude; 79 p.;
§ 1. La caractéristique. Corps premiers. § 2. Extensions algébriques. § 3. Corps algébriquement fermés. § 4. Extensions normales. § 5. La théorie de Galois. § 6. Extensions algébriques séparables. § 7. Racines de l'unité. Corps finis. § 8. Extensions…
Livre: Algèbre
Sujets : corps commutatifs, extensions algébriques, corps algébriquement clos, extensions normales, extensions galoisiennes, groupes de Galois, racines de l'unité, corps finis, extensions transcendantes, extensions composées, extensions séparables,

Fonds Jean Delsarte (Institut Élie Cartan); 9 p.;
Ce paragraphe porte sur une application de la théorie des formes quadratiques et des formes hermitiennes à la recherche du nombre de racines d'une équation algébrique situées dans certaines régions du plan complexe.
Livre: Algèbre
Sujets : formes bilinéaires et quadratiques, formes hermitiennes,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 118 p.;
§ 1. Formes bilinéaires et dualités. § 2. Equivalence des formes bilinéaires symétriques et antisymétriques. § 3. Groupes orthogonaux, groupes unitaires et groupes symplectiques. § 4. Invariants des groupes orthogonaux et symplectiques. § 5.…
Livre: Algèbre
Sujets : formes bilinéaires et quadratiques, formes hermitiennes, dualité (formes bilinéaires), groupes orthogonaux, groupes unitaires, groupes symplectiques, spineurs, forme hermitienne (réduction d'une),

Fonds Jean Delsarte (Institut Élie Cartan); 80 p.;
§ 1. Formes bilinéaires et dualités. § 2. Equivalence des formes sesquilinéaires réflexives. § 3. Groupes associés aux formes sesquilinéaires réflexives. § 4. Réduction d'une forme hermitienne à ses axes.
Livre: Algèbre
Sujets : formes bilinéaires et quadratiques, formes hermitiennes, dualité (formes bilinéaires), groupe d'une forme bilinéaire, groupes symplectiques, groupes orthogonaux, groupes unitaires, forme hermitienne (réduction d'une),

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 154 p.;
Commentaires sur le chapitre VII, puis chapitre VII à proprement parler. § 1. Idéaux minimaux d'un anneau à opérateurs. § 2. Anneaux semi-simples et anneaux simples. § 3. Produits tensoriels d'algèbres semi-simples. § 4. Représentations des algèbres…
Livre: Algèbre
Sujets : algèbres semi-simples, anneaux artiniens, anneaux semi-simples et simples, produits tensoriels d'algèbres semi-simples, représentations linéaires des groupes et des algèbres,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 172 p.;
Commentaire sur le chapitre V, puis le chapitre à proprement parler : § 1. groupes ordonnés et groupes réticulés; § 2. groupes cohérents et groupes décomposables; § 3. Divisibilité dans un anneau d'intégrité. Anneaux arithmétiques et anneaux…
Livre: Algèbre
Sujets : divisibilité, groupes ordonnés, anneaux arithmétiques, anneaux principaux, anneaux de Prüfer, anneaux de Dedekind, endomorphismes des espaces vectoriels, corps p-adiques,

Fonds Jean Delsarte (Institut Élie Cartan); 119 p.;
§ 1. Groupes ordonnés. § 2. Corps ordonnés. § 3. Divisibilité dans un corps. Anneaux arithmétiques et anneaux principaux. § 4. Modules de type fini sur un anneau principal. § 5. Application de la théorie des diviseurs élémentaires. § 6. Anneaux…
Livre: Algèbre
Sujets : divisibilité, groupes ordonnés, corps ordonnés, anneaux arithmétiques, anneaux principaux, diviseurs élémentaires, endomorphismes des espaces vectoriels, anneaux noethériens,

Fonds Jean Delsarte (Institut Élie Cartan); Serre, Jean-Pierre; 23 p.;
§ 5. Endomorphismes des espaces vectoriels. n°1. Le module associé à un endomorphisme. n°2. Endomorphismes sur un corps de base algébriquement clos. n°3. Valeurs propres et vecteurs propres. n°4. Réduction à la forme diagonale. n°5. Propriétés du…
Livre: Algèbre
Sujets : modules sur les anneaux principaux, endomorphismes des espaces vectoriels,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 123 p.;
§ 1. Géométrie projective. § 2. Géométrie affine. § 3. Géométrie euclidienne et géométrie hermitienne.
Livre: Algèbre
Sujets : géométrie élémentaire, espaces projectifs, géométrie projective, espaces affines, géométrie affine, espaces euclidiens, géométrie euclidienne, géométrie hermitienne,

Fonds Jean Delsarte (Institut Élie Cartan); 46 p.;
§ 1. Anneaux primitifs et semi-primitifs; étude externe. § 2. Etude interne des anneaux primitifs; le radical d'un anneau. § 3. Anneaux d'Artin. § 4. Produits tensoriels d'algèbres primitives. § 5. Isomorphismes d'algèbres primitives. § 6.…
Livre: Algèbre
Sujets : anneaux primitifs, anneaux semi-simples et simples, modules semi-simples et simples, radical d'un anneau, anneaux artiniens, produits tensoriels d'algèbres primitives, représentations linéaires des groupes et des algèbres,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 61 p.;
§ 1. Polynômes. § 2. Fonctions polynômes. § 3. Fractions rationnelles et fonctions rationnelles. § 4. Différentielles et dérivations.
Livre: Algèbre
Sujets : polynômes, polynôme (fonction), fractions rationnelles, polynôme (différentielle d'une fonction), polynôme (dérivée d'une fonction),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Delsarte, Jean; 154 p.;
§ 1. Corps premiers. Caractéristique. § 2. Extensions algébriques et extensions transcendantes. § 3. Corps algébriquement fermés. Extensions universelles. § 4. Isomorphismes. Dérivations. Extensions séparables. § 5. Composition des corps. § 6.…
Livre: Algèbre
Sujets : corps commutatifs, extensions algébriques, extensions transcendantes, corps algébriquement clos, extensions séparables, extensions normales, extensions galoisiennes, groupes de Galois, racines de l'unité, corps finis, extensions cycliques, extensions galoisiennes infinies,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Cartan, Henri; 15 p.;
Appendice I sur les applications universelles. Appendice II. Produit tensoriel d'une infinité d'algèbres sur un corps.
Livre: Algèbre
Sujets : applications universelles, produits tensoriels, monoïdes libres, groupes libres, modules libres, structures uniformes,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Chevalley, Claude; 73 p.;
§ 1. Algèbres. § 2. Algèbres de polynômes. § 3. Fonctions polynômes. § 4. Dérivation des polynômes.
Livre: Algèbre
Sujets : polynômes, algèbres, polynôme (fonction), polynôme (différentielle d'une fonction), polynôme (dérivée d'une fonction),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Chevalley, Claude; 8 p.;
Ces observations portent sur la rédaction n°38, i.e. l'état 5 du chapitre II (algèbre linéaire). On notera que l'auteur de ces observations insiste sur la structure de groupe abélien à opérateurs, justement mise en exergue dans la contre-rédaction…
Livre: Algèbre
Sujets : algèbre linéaire, groupes abéliens à opérateurs,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 45 p.;
§ 8. Racines de l'unité. Corps finis. Extensions cycliques. § 9. Eléments radiciels. Critères de séparabilité. Dérivations. Appendice I. Fractions rationnelles symétriques. Appendice II. Extensions galoisiennes de degré infini.
Livre: Algèbre
Sujets : corps commutatifs, racines de l'unité, corps finis, extensions cycliques, extensions séparables, fractions rationnelles symétriques, extensions galoisiennes infinies, éléments radiciels,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Samuel, Pierre; 85 p.;
§ 1. Corps premiers. Caractéristique. § 2. Extensions. § 3. Extensions algébriques. § 4. Extensions transcendantes. § 5. Extensions composées. § 6. Théorème d'existence. § 7. Isomorphismes. Dérivations - séparabilité. § 8. Théorie de Galois. § 9.…
Livre: Algèbre
Sujets : corps commutatifs, extensions algébriques, extensions transcendantes, extensions composées, extensions séparables, extensions galoisiennes, groupes de Galois, racines de l'unité, corps finis, extensions cycliques,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 19 p.;
1. Définition des séries formelles. 2. Ordre d'une série formelle. 3. Séries formelles sur un anneau d'intégrité. 4. Formes infinies de séries formelles. 5. Substitutions de séries formelles dans une série formelle. 6. Séries formelles inversibles.…
Livre: Algèbre
Sujets : polynômes, séries formelles,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Weil, André; 13 p.;
Le chapitre V (état 4) sur les corps commutatifs est ici discuté.
Livre: Algèbre
Sujets : corps commutatifs,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Weil, André; 156 p.;
La rédaction s'ouvre sur des remarques, addenda, etc. au chap. VI, § 1. Vient ensuite la rédaction à proprement parler : § 1. Groupes ordonnés. § 2. Divisibilité dans un corps; anneaux factoriels et anneaux principaux. § 3. Groupes ordonnés additifs.…
Livre: AlgèbreAlgèbre commutative
Sujets : divisibilité, modules sur les anneaux principaux, groupes ordonnés, anneaux factoriels, anneaux principaux, valuations, spécialisations, anneaux noethériens, anneaux de Dedekind, diviseurs élémentaires, endomorphismes des espaces vectoriels,

Fonds Jean Delsarte (Institut Élie Cartan); 13 p.;
§ 4. Corps ordonnés. 1. Anneaux ordonnés. 2. Corps ordonnés. 3. Extensions de corps ordonnés. 4. Extensions algébriques de corps ordonnés. 5. Corps ordonnés maximaux. 6. Corps ordonnés maximaux. Théorème d'Artin-Gauss-Schreier.
Livre: Algèbre
Sujets : divisibilité, corps ordonnés,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Roger, Frédéric; 9 p.;
1. Représentations linéaires. 2. Structure des modules monogènes. Idéaux unitaires. Eléments conversibles. 3. Idéaux maximaux. Idéaux primitifs. Radical.
Livre: Algèbre
Sujets : anneaux primitifs, radical d'un anneau,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Samuel, Pierre; 24 p.;
§ 1. Anneaux primitifs et semi-primitifs. Le radical. 1) Sommes, produits et intersections d'idéaux. 2) Modules simples et semi-simples. 3) Définition des anneaux primitifs et semi-primitifs. 4) Commutants et bicommutants. 5) Le radical d'une algèbre…
Livre: Algèbre
Sujets : anneaux primitifs, modules semi-simples et simples, radical d'une algèbre,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Chevalley, Claude; 19 p.;
Commentaires à la rédaction Weil. I. Anneaux de spécialisation. II. Notions relatives aux éléments entiers. III. Valuations et ordinations. IV. Groupes ordonnés. V. Remarques diverses. Vient ensuite un paragraphe sur les idéaux dans les anneaux…
Livre: Algèbre
Sujets : divisibilité, spécialisations, valuations, groupes ordonnés, anneaux noethériens,
Formats de sortie

atom, dcmes-xml, json, omeka-xml, rss2