ensembles convexes, convexité : Contenus (7 total)

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 72 p.; 1937;
§ 1. Linéarité et convexité. Translations, homothéties. Droites, demi-droites, segments, variétés linéaires. Ensembles étoilés et ensembles convexes. Fonctions linéaires et fonctions convexes (Hanh-Banach).§ 2. Espaces linéaires. Complétion d’un…
Livre: Espaces vectoriels topologiques
Sujets : ensembles convexes, convexité, espaces normés, dualité (théorie de la) dans les espaces vectoriels topologiques,

Fonds Jean Delsarte (Institut Élie Cartan); 57 p.;
§ 1. Préliminaires. Ensembles étoilés et ensembles convexes. Structures vectorielles réelle et complexe. Ensembles étoilés ; ensembles cerclés ; indicatrices. Ensembles convexes. Le théorème de Hahn-Banach. § 2. Espaces vectoriels topologiques.…
Livre: Espaces vectoriels topologiques
Sujets : ensembles convexes, convexité, espaces localement convexes,

Fonds Jean Delsarte (Institut Élie Cartan); 200 p.;
Chapitre 1. Topologie d’espaces vectoriels topologiques. Espaces localement convexes. § 1. Préliminaires. Ensembles étoilés et ensembles convexes. § 2. Espaces vectoriels topologiques. § 3. Ensembles convexes, variétés linéaires et formes linéaires…
Livre: Espaces vectoriels topologiques
Sujets : ensembles convexes, convexité, espaces localement convexes, espaces localement convexes métrisables, espaces normés, espaces de Hilbert, Equations linéaires et non linéaires dans les espaces normés,

Fonds Jean Delsarte (Institut Élie Cartan); 190 p.;
Chapitre 1, (État 4) espaces vectoriels topologiques sur un corps valué. § 1. Espaces vectoriels topologiques. § 2. Variétés linéaires dans un espaces vectoriel topologique. § 3. Espaces d’applications linéaires continues. § 4. Dual d’un espace…
Livre: Espaces vectoriels topologiques
Sujets : espaces vectoriels sur un corps valué, ensembles convexes, convexité, espaces localement convexes,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 28 p.;
Sommaire. § 1. Définition et propriétés des ensembles convexes. § 2. Fonctions convexes. § 3. Variétés d’appui d’un ensemble convexe.
Livre: Espaces vectoriels topologiques
Sujets : ensembles convexes, convexité,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 186 p.;
Chapitre I. Sommaire. § 1. Espaces vectoriels topologiques. § 2. Variétés linéaires dans un espace vectoriel topologique. § 3. Espaces d’applications linéaires continues. § 4. Dual d’un espace vectoriel topologique. § 5. Espaces vectoriels…
Livre: Espaces vectoriels topologiques
Sujets : espaces vectoriels sur un corps valué, ensembles convexes, convexité, espaces localement convexes,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 53 p.;
Commentaires. § 1. Ensembles convexes. § 2. Séparation des ensembles convexes. § 3. Ensembles compacts dans les espaces vectoriels topologiques. § 4. Semi-normes. Appendice. Espaces localement convexes complexes.
Livre: Espaces vectoriels topologiques
Sujets : ensembles convexes, convexité, espaces localement convexes,
Formats de sortie

atom, csv, dcmes-xml, json, omeka-xml, rss2