Parcourir les contenus (131 total)

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Cartan, Henri; 15 p.;
Appendice I sur les applications universelles. Appendice II. Produit tensoriel d'une infinité d'algèbres sur un corps.
Livre: Algèbre
Sujets : applications universelles, produits tensoriels, monoïdes libres, groupes libres, modules libres, structures uniformes,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Chevalley, Claude; 73 p.;
§ 1. Algèbres. § 2. Algèbres de polynômes. § 3. Fonctions polynômes. § 4. Dérivation des polynômes.
Livre: Algèbre
Sujets : polynômes, algèbres, polynôme (fonction), polynôme (différentielle d'une fonction), polynôme (dérivée d'une fonction),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Chevalley, Claude; 8 p.;
Ces observations portent sur la rédaction n°38, i.e. l'état 5 du chapitre II (algèbre linéaire). On notera que l'auteur de ces observations insiste sur la structure de groupe abélien à opérateurs, justement mise en exergue dans la contre-rédaction…
Livre: Algèbre
Sujets : algèbre linéaire, groupes abéliens à opérateurs,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Eilenberg, Samuel, Weil, André; 82 p.;
I. Groupoïdes. II. La notion d'homotopie. III. Recouvrements et complexes simpliciaux. IV. Espaces fibrés.
Livre: Topologie algébrique
Sujets : homotopie, espaces fibrés,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 35 p.;
Sommaire. § 1. Espaces localement convexes réels. § 2. Ensembles convexes et variétés linéaires dans un espace localement convexe. § 3. Dual faible d’un espace localement convexe. § 4. Espaces localement convexes complexes.
Livre: Espaces vectoriels topologiques
Sujets : espaces localement convexes, dualité faible (espaces vectoriels topologiques),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 60 p.;
Sommaire § 1. Espaces de Fréchet et espaces de Banach. § 2. Dual fort d’un espace de Fréchet. § 3. Limites inductives d’espaces de Fréchet. § 4. Applications complètement continues.
Livre: Espaces vectoriels topologiques
Sujets : espaces localement convexes métrisables, espaces de Fréchet, espaces de Banach, dual fort (d'un espace de Fréchet), applications linéaires complètement continues,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 45 p.;
§ 8. Racines de l'unité. Corps finis. Extensions cycliques. § 9. Eléments radiciels. Critères de séparabilité. Dérivations. Appendice I. Fractions rationnelles symétriques. Appendice II. Extensions galoisiennes de degré infini.
Livre: Algèbre
Sujets : corps commutatifs, racines de l'unité, corps finis, extensions cycliques, extensions séparables, fractions rationnelles symétriques, extensions galoisiennes infinies, éléments radiciels,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 19 p.;
Cette rédaction présente le détail des corrections à apporter aux chapitres I et II de Topologie générale, en vue de leur réédition.
Livre: Topologie générale
Sujets : structures topologiques, structures uniformes,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Samuel, Pierre; 85 p.;
§ 1. Corps premiers. Caractéristique. § 2. Extensions. § 3. Extensions algébriques. § 4. Extensions transcendantes. § 5. Extensions composées. § 6. Théorème d'existence. § 7. Isomorphismes. Dérivations - séparabilité. § 8. Théorie de Galois. § 9.…
Livre: Algèbre
Sujets : corps commutatifs, extensions algébriques, extensions transcendantes, extensions composées, extensions séparables, extensions galoisiennes, groupes de Galois, racines de l'unité, corps finis, extensions cycliques,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 19 p.;
1. Définition des séries formelles. 2. Ordre d'une série formelle. 3. Séries formelles sur un anneau d'intégrité. 4. Formes infinies de séries formelles. 5. Substitutions de séries formelles dans une série formelle. 6. Séries formelles inversibles.…
Livre: Algèbre
Sujets : polynômes, séries formelles,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Cartan, Henri; 7 p.;
Intégration des formes différentielles de degré n de R^n sur les cubes de R^n. Formule de Stokes. Intégration sur les simplexes singuliers différentiables d'une variété différentiable. Théorie générale de la différentiation extérieure.
Livre: Variétés différentielles
Sujets : formes différentielles (intégration des),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 37 p.;
Sommaire. § 1. Espaces vectoriels topologiques. § 2. Variétés linéaires dans un espace vectoriel topologique. § 3. Dual d’un espace vectoriel topologique.
Livre: Espaces vectoriels topologiques
Sujets : espaces vectoriels sur un corps valué,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 28 p.;
Sommaire. § 1. Définition et propriétés des ensembles convexes. § 2. Fonctions convexes. § 3. Variétés d’appui d’un ensemble convexe.
Livre: Espaces vectoriels topologiques
Sujets : ensembles convexes, convexité,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 17 p.;
§ 1. Comparaison des fonctions sur un ensemble filtré. 1. Relations de comparaison. 2. Conventions et notations. 3. Propriétés de transitivité ; relations d'ordre. § 2. Développements asymptotiques. Il est ensuite précisé que "le reste du chapitre ne…
Livre: Fonctions d'une variable réelle
Sujets : étude locale de fonctions,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Weil, André; 13 p.;
Le chapitre V (état 4) sur les corps commutatifs est ici discuté.
Livre: Algèbre
Sujets : corps commutatifs,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Eilenberg, Samuel; 3 p.;
Cette rédaction très courte présente un théorème général d'associativité.

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Dieudonné, Jean; 114 p.;
§ 1. La relation d'égalité et les symboles fonctionnels. § 2. La relation d'appartenance. § 3. Produit de deux ensembles. § 4. Fonctions. § 5. Réunion, intersection, produit d'une famille d'ensembles. § 6. Relations d'équivalence, ensembles…
Livre: Théorie des ensembles
Sujets : théorie des ensembles abstraits, relations (ensembles), produit (d'ensembles), fonctions (théorie des ensembles), opérations (sur les sous-ensembles), structures,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Weil, André; 156 p.;
La rédaction s'ouvre sur des remarques, addenda, etc. au chap. VI, § 1. Vient ensuite la rédaction à proprement parler : § 1. Groupes ordonnés. § 2. Divisibilité dans un corps; anneaux factoriels et anneaux principaux. § 3. Groupes ordonnés additifs.…
Livre: AlgèbreAlgèbre commutative
Sujets : divisibilité, modules sur les anneaux principaux, groupes ordonnés, anneaux factoriels, anneaux principaux, valuations, spécialisations, anneaux noethériens, anneaux de Dedekind, diviseurs élémentaires, endomorphismes des espaces vectoriels,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Roger, Frédéric; 9 p.;
1. Représentations linéaires. 2. Structure des modules monogènes. Idéaux unitaires. Eléments conversibles. 3. Idéaux maximaux. Idéaux primitifs. Radical.
Livre: Algèbre
Sujets : anneaux primitifs, radical d'un anneau,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 3 p.;
Le rédacteur précise comment il souhaiterait que débute le paragraphe sur les familles d'ensembles. Pour ce faire, il énonce une série d'axiomes.
Livre: Théorie des ensembles
Sujets : théorie des ensembles abstraits, ensembles (famille d'),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Samuel, Pierre; 24 p.;
§ 1. Anneaux primitifs et semi-primitifs. Le radical. 1) Sommes, produits et intersections d'idéaux. 2) Modules simples et semi-simples. 3) Définition des anneaux primitifs et semi-primitifs. 4) Commutants et bicommutants. 5) Le radical d'une algèbre…
Livre: Algèbre
Sujets : anneaux primitifs, modules semi-simples et simples, radical d'une algèbre,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Chevalley, Claude; 91 p.;
Préliminaires. Première partie. § 1. Algèbres non associatives. § 2. Algèbres de Lie (Définitions). § 3. Algèbres semi-simples (Enoncé du théorème fondamental). § 4. La démonstration que que II implique III. Première partie, le théorème d'Engel. § 5.…
Livre: Groupes et algèbres de Lie
Sujets : algèbres non associatives, algèbres de Lie (définition), algèbres de Lie semi-simples et simples, opérateurs de Casimir, sous-algèbres de Cartan, algèbres de Lie (représentations des), poids et racines (représentations des algèbres de Lie),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Chevalley, Claude; 19 p.;
Commentaires à la rédaction Weil. I. Anneaux de spécialisation. II. Notions relatives aux éléments entiers. III. Valuations et ordinations. IV. Groupes ordonnés. V. Remarques diverses. Vient ensuite un paragraphe sur les idéaux dans les anneaux…
Livre: Algèbre
Sujets : divisibilité, spécialisations, valuations, groupes ordonnés, anneaux noethériens,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Schwartz, Laurent; 48 p.;
Première partie : Définitions et propriétés générales. Deuxième partie : Eléments infinitésimaux du premier ordre. Troisième partie : produits de variétés. Quatrième partie : fonctions implicites. Cinquième partie : Eléments infinitésimaux d'ordre…
Livre: Variétés différentielles
Sujets : variétés différentielles (définitions), formes différentielles, systèmes différentiels extérieurs (intégration locale des), formes différentielles (intégration des), éléments infinitésimaux,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 32 p.;
§ 1. Espaces de Fréchet et espaces de Banach. § 2. Dual fort d’un espace de Fréchet. § 3. Bidual d’un espace de Fréchet. Espaces réflexifs. § 4. Continuité forte et continuité faible. Transposées. Compléments sur les théorèmes de Grothendieck et…
Livre: Espaces vectoriels topologiques
Sujets : espaces localement convexes métrisables, espaces de Fréchet, espaces de Banach, dual fort (d'un espace de Fréchet), espaces réflexifs, continuité forte, continuité faible,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 45 p.;
Sommaire § 1. Espaces préhilbertiens et espaces hilbertiens. § 2. Familles orthogonales dans un espace hilbertien. § 3. Produits tensoriels d’espaces hilbertiens. § 4. Opérateurs dans un espace hilbertien.
Livre: Espaces vectoriels topologiques
Sujets : espaces de Hilbert,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 41 p.;
Commentaires. Puis rédaction du présent chapitre. § 1. Modules gradués. § 2. Modules à bord. § 3. Modules caténaires. § 4. Cochaînes, modules de cohomologie. § 5. Théorèmes des coefficients universels et de Künneth. § 6. Structure multiplicative,…
Livre: Topologie algébrique
Sujets : algèbre homologique,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 7 p.;
Objectif de ce § : permettre la publication du chapitre III avant les chapitres I et II. Voici les parties de ce paragraphe introductif : 1. Relations entre objets mathématiques. 2. Fonctions et famille d'ensembles. 3. Entiers énumérés. 4. L'ensemble…
Livre: Théorie des ensembles
Sujets : logique mathématique, relations (logique), types (logique), théorie des ensembles abstraits,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 53 p.;
Dictionnaire des principales notions utilisées en topologie. Le rédacteur s'appuie sur plusieurs sources. (i) A-H pour P. Alexandroff- H. Hopf, Topologie I. (ii) F pour M. Fréchet, Les espaces abstraits. (iii) H. pour F. Hausdorff, Mengenlehre (2ème…
Livre: Topologie générale
Sujets : dictionnaire (topologie),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Chevalley, Claude; 34 p.;
§ 1. Echelles d'ensembles. § 2. Squelettes typiques. § 3. Incarnations d'un squelette typique. § 4. Théories structurales. § 5. Structures.
Livre: Théorie des ensembles
Sujets : théorie mathématique, structures,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Chevalley, Claude; 57 p.;
Le chapitre est précédé de commentaires, mentionnant le chapitre III sur les structures. Voici le plan du chapitre II : § 1. l'axiome d'extensionalité; § 2. l'axiome du couple; § 3. l'axiome de la sélection; § 4. correspondances; § 5. fonctions; § 6.…
Livre: Théorie des ensembles
Sujets : théorie des ensembles abstraits, fonctions (théorie des ensembles), ensembles (famille d'), relations (ensembles), produit (d'ensembles),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Chevalley, Claude; 60 p.;
Le présent document débute par cinq pages de commentaires, motivant les choix faits par l'auteur. Vient ensuite la rédaction proprement dite. I. Règles formatives. II. Règles d'inférence. Théories. III. Premiers schémas d'axiomes. Le théorème de la…
Livre: Théorie des ensembles
Sujets : logique mathématique, relations (logique), théorie mathématique, types (logique),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 64 p.;
§ 1. Modules et anneaux noethériens. § 2. Anneaux principaux. § 3. Modules sur les anneaux principaux. [Sont ensuite intercalées trois pages : Divisibilité. Plan de l'état 4. Commentaires]. § 4. Endomorphismes des espaces vectoriels.
Livre: Algèbre
Sujets : modules sur les anneaux principaux, anneaux noethériens, anneaux principaux, endomorphismes des espaces vectoriels,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 34 p.;
§ 1. Groupes ordonnés. Divisibilité. 1. Définition des monoïdes et groupes ordonnés. 2. Monoïdes et groupes préordonnés. 3. Eléments positifs. 4. Groupes filtrants. 5. Relations de divisibilité dans un corps. 6. Opérations élémentaires sur les…
Livre: Algèbre
Sujets : divisibilité, groupes ordonnés,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 34 p.;
L'auteur se situe par rapport au chap. II consacré aux anneaux noethériens. Viennent ensuite les paragraphes du chapitre III. § 1. Anneau gradué associé à un idéal. § 2. Complété et idéaux d'un anneau M-adique. § 3. Extensions finies d'anneaux…
Livre: Algèbre commutative
Sujets : anneaux gradués, anneaux M-adiques,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Schwartz, Laurent; 56 p.;
Chapitre I. Espaces vectoriels topologiques sur un corps valué. § 1. Espaces vectoriels topologiques. § 2. Variétés linéaires dans un espace vectoriel topologique. § 3. Espaces vectoriels métrisables. Chapitre II. Convexité, ensembles convexes,…
Livre: Espaces vectoriels topologiques
Sujets : fascicule de résultats (espaces vectoriels topologiques),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 41 p.;
Sommaire. § 1. Espaces d’applications linéaires continues dans un espace localement convexe. § 2. Ensembles polaires et ensembles semi-polaires. § 3. Dual fort et bidual d’un espace localement convexe. § 4. Transposée d’une application linéaire…
Livre: Espaces vectoriels topologiques
Sujets : dualité (théorie de la) dans les espaces vectoriels topologiques, espaces d'applications linéaires, ensembles polaires, ensembles semi-polaires, dual fort (d'un ensemble localement convexe), espaces réflexifs, continuité forte, continuité faible,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); 74 p.;
En introduction, situation de ce premier chapitre par rapport au suivant (sur les anneaux noethériens). Mise en avant de liens avec l'arithmétique et la géométrie algébrique. § 1. Spécialisation. § 2. Valuations. § 3. Eléments entiers sur un anneau.…
Livre: Algèbre commutative
Sujets : spécialisations, valuations, anneaux normaux, anneaux factoriels, anneaux de Dedekind,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Dixmier, Jacques; 50 p.;
Le présent document s'ouvre sur des commentaires suivis d'un sommaire. L'auteur se situe par rapport aux états 5 et 4 du chapitre I. Vient ensuite la rédaction à proprement parler. § 1. Termes et relations. § 2. Théorèmes. § 3. Théories logiques. §…
Livre: Théorie des ensembles
Sujets : logique mathématique, relations (logique), théorie mathématique,

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Cartan, Henri; 18 p.;
Dans son commentaire, l'auteur précise avoir suivi l'idée de Weil selon laquelle la théorie de l'intégration des formes différentielles doit être vue comme un de la "théorie de la cohomologie des variétés". Voici le détail du plan adopté dans cette…
Livre: Variétés différentielles
Sujets : formes différentielles (intégration des),
Formats de sortie

atom, dcmes-xml, json, omeka-xml, rss2