Parcourir les contenus (111 total)

Fonds Jean Delsarte (Institut Élie Cartan); Cartan, Henri; 21 p.;
§ I. Mesures. § 2. Mesures k-dimensionnelles. § 3. Intégrales par rapport à une mesure donnée.
Livre: Intégration
Sujets : mesure de Radon, mesure k-dimensionnelle, mesure et intégration dans les espaces topologiques,

Fonds Jean Delsarte (Institut Élie Cartan); Cartan, Henri; 8 p.;
1. Voisinages. 2. Structures topologiques.
Livre: Topologie générale
Sujets : structures topologiques,

Fonds Jean Delsarte (Institut Élie Cartan); Cartan, Henri; 12 p.;
Constructions de relations. Tableau d'équivalences syntaxiques. Définition des relations vraies, ou identités logiques. Les théories avec axiomes. Les théories avec axiomes et hypothèses. Théories non contradictoires.
Livre: Théorie des ensembles
Sujets : logique mathématique, théorie mathématique,

Fonds Jean Delsarte (Institut Élie Cartan); Cartan, Henri; 14 p.;
Le rédacteur revient sur le § 5 du chapitre III, tel qu'il était abordé dans la rédaction n°134. Il propose de distinguer "fonctions mesurables" et "fonctions localement mesurables". De plus, il entend étudier "les fonctions qui sont définies…
Livre: Intégration
Sujets : ensembles mesurables, fonctions mesurables,

Fonds Jean Delsarte (Institut Élie Cartan); Chevalley, Claude, Dieudonné, Jean; 44 p.;
§ 1. Lois de composition reliant deux ensembles. § 2. Lois de composition dans [un ensemble fondamental] γ. § 3. Associativité. § 4. Élément unité. § 5. Éléments inverses. Éléments réguliers. § 6. Groupes. § 7. Commutativité. § 8. Prolongement de…
Livre: Algèbre
Sujets : structures algébriques, lois de composition, groupes, systèmes à composition multiple,

Fonds Jean Delsarte (Institut Élie Cartan); Chevalley, Claude; 75 p.;
§ 1. Groupes abéliens à opérateurs. § 2. Espaces vectoriels. § 3. Dualité entre espaces vectoriels. § 4. Matrices. § 5. Changement du corps de base
Livre: Algèbre
Sujets : algèbre linéaire, groupes abéliens à opérateurs, espaces vectoriels, dualité (modules et espaces vectoriels), matrices,

Fonds Jean Delsarte (Institut Élie Cartan); Chevalley, Claude; 29 p.;
§ 1. Anneaux sur un corps. n°1 Applications multilinéaires. n°2 Anneaux de monoïdes. § 2. Anneaux de polynômes. n°1 Définition. n°2 Polynômes sur un anneau. n°2 Le degré. n°3 Différentielles et dérivées de polynômes. n°4 Formules de Taylor et de…
Livre: Algèbre
Sujets : polynômes, anneaux de monoïdes, polynôme (fonction), polynôme (différentielle d'une fonction), polynôme (dérivée d'une fonction),

Fonds Jean Delsarte (Institut Élie Cartan); Chevalley, Claude; 79 p.;
§ 1. La caractéristique. Corps premiers. § 2. Extensions algébriques. § 3. Corps algébriquement fermés. § 4. Extensions normales. § 5. La théorie de Galois. § 6. Extensions algébriques séparables. § 7. Racines de l'unité. Corps finis. § 8. Extensions…
Livre: Algèbre
Sujets : corps commutatifs, extensions algébriques, corps algébriquement clos, extensions normales, extensions galoisiennes, groupes de Galois, racines de l'unité, corps finis, extensions transcendantes, extensions composées, extensions séparables,

Fonds Jean Delsarte (Institut Élie Cartan); Chevalley, Claude; 57 p.;
I. Nombres cardinaux. 1. Définition des cardinaux. 2. Opérations sur les nombres cardinaux. II. Entiers naturels. Ensembles finis. 1. Le principe de récurrence. 2. Opérations sur les entiers naturels et les ensembles finis. 3. Division euclidienne.…
Livre: Théorie des ensembles
Sujets : nombres cardinaux, entiers naturels, ensembles finis, ensembles dénombrables, ensembles ordonnés finis,

Fonds Jean Delsarte (Institut Élie Cartan); Chevalley, Claude; 12 p.;
1. Segments. 2. Ordinaux. 3. Le théorème de Zermelo. 4. Remarques sur l'emploi de l'axiome du choix.
Livre: Théorie des ensembles
Sujets : ensembles bien ordonnés,

Fonds Jean Delsarte (Institut Élie Cartan); Chevalley, Claude; 8 p.;
L'auteur dégage trois notions primitives : ensemble, classe et appartenance, qui le conduisent à formuler une série d'axiomes. Il s'appuie sur ces axiomes pour construire la classe des nombres ordinaux. Il aborde pour finir la notion d'ensemble…
Livre: Théorie des ensembles
Sujets : théorie des ensembles abstraits, ensemble constructible,

Fonds Jean Delsarte (Institut Élie Cartan); Delsarte, Jean ; 32 p.;
Introduction : notions intuitives de collection et de continuum. I. Notions se rattachant à la considération d'un seul ensemble. II. Notions se rattachant à la considération simultanée de deux ou d'un petit nombre d'ensembles. III. Notions résultant…
Livre: Théorie des ensembles
Sujets : fascicule de résultats (ensembles),

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 72 p.; 1937;
§ 1. Linéarité et convexité. Translations, homothéties. Droites, demi-droites, segments, variétés linéaires. Ensembles étoilés et ensembles convexes. Fonctions linéaires et fonctions convexes (Hanh-Banach).§ 2. Espaces linéaires. Complétion d’un…
Livre: Espaces vectoriels topologiques
Sujets : ensembles convexes, convexité, espaces pseudo-normés, espaces normés, espaces normés complets, dualité (théorie de la) dans les espaces vectoriels topologiques, structures faibles (espaces vectoriels topologiques),

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 363 p.;
Notations. Chapitre I. Tribus d’ensembles. § 1. Définition et premières conséquences. § 2. Tribu induite dans un sous-ensemble. § 3. Génération d'une tribu par une famille d'ensembles. § 4. Tribu de Borel dans un ensemble ordonné. § 5. Produit de…
Livre: Intégration
Sujets : tribu, fonctions mesurables, fonctionnelles linéaires croissantes, Inégalités de convexité, espaces L^p, intégrale définie, intégrale indéfinie, fonctionnelle linéaire croissante (prolongement d'une), fonctions d'ensembles additives, fonction de Carathéodory, mesures (produits de), intégrales multiples, mesure et intégration dans les espaces topologiques, mesure de Radon, dérivation des fonctions d'ensembles additives, mesure de Lebesgue,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 122 p.;
§ 1. Modules. § 2. Fonctions vectorielles et fonctions linéaires. Matrices. Dualité. § 3. Espaces vectoriels. § 4. Formes multilinéaires, produits tensoriels, tenseurs. Appendice : le théorème d'isomorphie des modules complètement réductibles.
Livre: Algèbre
Sujets : algèbre linéaire, algèbre multilinéaire, modules, matrices, dualité (modules et espaces vectoriels), espaces vectoriels, produits tensoriels, tenseurs,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 61 p.;
§ 1. Généralités sur les systèmes hypercomplexes. § 2. Exemples de systèmes hypercomplexes. § 3. Algèbre extérieure. § 4. Déterminants.
Livre: Algèbre
Sujets : systèmes hypercomplexes, algèbres, algèbres extérieures, déterminants,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 61 p.;
§ 1. Polynômes. § 2. Fonctions polynômes. § 3. Dérivées des polynômes. § 4. Décomposition des fractions rationnelles, interpolation. § 5. Fonctions symétriques.
Livre: Algèbre
Sujets : polynômes, polynôme (fonction), polynôme (dérivée d'une fonction), fractions rationnelles, polynômes symétriques, fractions rationnelles symétriques,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean ; 141 p.;
Commentaire à l'appendice au chapitre V ainsi qu'au chapitre VI, puis chapitre VI à proprement parler. § 1. Caractéristique, corps premiers. § 2. Extensions simples. Eléments algébriques et éléments transcendants. § 3. Extensions algébriques et…
Livre: Algèbre
Sujets : corps commutatifs, extensions algébriques, extensions transcendantes, extensions galoisiennes, groupes de Galois, racines de l'unité, corps finis, corps ordonnés, extensions algébriques des corps p-adiques, extensions galoisiennes infinies,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 39 p.;
Introduction : objet du présent fascicule. Puis fascicule proprement dit. § 1. Eléments et parties d'un ensemble. § 2. la notion de fonction. § 3. Produit de plusieurs ensembles. Correspondances. § 4. Réunion, intersection, produit d'une famille…
Livre: Théorie des ensembles
Sujets : fascicule de résultats (ensembles),

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 150 p.;
Chapitre I. Logique mathématique. § 1. La formation des relations. § 2. Les relations vraies. § 3. Théories et axiomes. Chapitre II. Théorie des ensembles abstraits. § 1. La relation d'égalité et les symboles fonctionnels. § 2. La relation…
Livre: Théorie des ensembles
Sujets : logique mathématique, relations (logique), théorie mathématique, théorie des ensembles abstraits, relations (ensembles), produit (d'ensembles), opérations (sur les sous-ensembles), fonctions (théorie des ensembles), structures,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 55 p.;
§ 1. Analyse d'une démonstration. Les propositions. § 2. Structure de la proposition mathématique. Propriétés, relations, variables. § 3. Définitions et axiomes. § 4. Les objets mathématiques et la théorie des ensembles.
Livre: Théorie des ensembles
Sujets : logique mathématique,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 118 p.;
§ 1. Formes bilinéaires et dualités. § 2. Equivalence des formes bilinéaires symétriques et antisymétriques. § 3. Groupes orthogonaux, groupes unitaires et groupes symplectiques. § 4. Invariants des groupes orthogonaux et symplectiques. § 5.…
Livre: Algèbre
Sujets : formes bilinéaires et quadratiques, formes hermitiennes, dualité (formes bilinéaires), groupes orthogonaux, groupes unitaires, groupes symplectiques, spineurs, forme hermitienne (réduction d'une),

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 154 p.;
Commentaires sur le chapitre VII, puis chapitre VII à proprement parler. § 1. Idéaux minimaux d'un anneau à opérateurs. § 2. Anneaux semi-simples et anneaux simples. § 3. Produits tensoriels d'algèbres semi-simples. § 4. Représentations des algèbres…
Livre: Algèbre
Sujets : algèbres semi-simples, anneaux artiniens, anneaux semi-simples et simples, produits tensoriels d'algèbres semi-simples, représentations linéaires des groupes et des algèbres,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 172 p.;
Commentaire sur le chapitre V, puis le chapitre à proprement parler : § 1. groupes ordonnés et groupes réticulés; § 2. groupes cohérents et groupes décomposables; § 3. Divisibilité dans un anneau d'intégrité. Anneaux arithmétiques et anneaux…
Livre: Algèbre
Sujets : divisibilité, groupes ordonnés, anneaux arithmétiques, anneaux principaux, anneaux de Prüfer, anneaux de Dedekind, endomorphismes des espaces vectoriels, corps p-adiques,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 123 p.;
§ 1. Géométrie projective. § 2. Géométrie affine. § 3. Géométrie euclidienne et géométrie hermitienne.
Livre: Algèbre
Sujets : géométrie élémentaire, espaces projectifs, géométrie projective, espaces affines, géométrie affine, espaces euclidiens, géométrie euclidienne, géométrie hermitienne,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 145 p.;
Sommaire du chapitre V et commentaires. Chapitre V, intégration des mesures. § 1. Fonctions essentiellement intégrables. § 2. Intégration des mesures positives. § 3. Intégration des mesures ponctuelles positives. § 4. Mesures définies par des…
Livre: Intégration
Sujets : fonctions essentiellement intégrables, fonctions faiblement intégrables, mesures définies par des densités numériques, mesures (produits de), mesures vectorielles, mesures (désintégration des), ensembles analytiques, ensembles boréliens,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 63 p.;
Sommaire et commentaires. § 1. Mesure de Haar. 1. Mesures relativement invariantes. 2. Existence et unicité de la mesure de Haar. 3. Propriétés de la mesure de Haar. 4. Mesures relativement invariantes sur un groupe localement compact. Modules. 5.…
Livre: Intégration
Sujets : groupes topologiques localement compacts, mesure de Haar,

Fonds Jean Delsarte (Institut Élie Cartan); Dixmier, Jacques; 37 p.;
§ 1. Mesure de Haar. 1. Mesures relativement invariantes. 2. Existence de la mesure de Haar. 3. Module. 4. Mesures dans les espaces homogènes. 5. Espaces fonctionnels remarquables. 6. Quelques bons trucs pour calculer explicitement des mesures…
Livre: Intégration
Sujets : mesure de Haar, mesures (composition de),

Fonds Jean Delsarte (Institut Élie Cartan); Eilenberg, Samuel; 13 p.;
Cette rédaction est une courte synthèse sur l'homotopie et les groupes d'homotopie, avec un appendice de deux pages sur les théorèmes d'addition.
Livre: Topologie algébrique
Sujets : homotopie,

Fonds Jean Delsarte (Institut Élie Cartan); Godement, Roger; 52 p.;
(Sans titre) § 1. Espaces tonnelés. § 2. Ensembles bornés. § 3. espaces d’applications linéaires continues. Chapitre 4 (État 6) Théorie de la dualité. § 1. Dualité faible. § 2. Dual topologique d’un espace localement convexe. § 3. Topologie forte sur…
Livre: Espaces vectoriels topologiques
Sujets : espaces d'applications linéaires, espaces tonnelés, espaces bornologiques, dualité (théorie de la) dans les espaces vectoriels topologiques, espaces réflexifs, espaces de Montel, dualité faible (espaces vectoriels topologiques), continuité forte, continuité faible,

Fonds Jean Delsarte (Institut Élie Cartan); Godement, Roger; 178 p.;
Chapitre I. Propriétés générales des algèbres arbitraires. Chapitre II. Algèbres normées commutatives. § 1. Fonctions analytiques dans un espace de Banach. § 2. Propriétés générales des algèbres normées. § 3. Algèbres normées commutatives :…

Fonds Jean Delsarte (Institut Élie Cartan); Godement, Roger; 120 p.;
§ 1. Intégrale supérieure d'une fonction positive. § 2. Fonctions et ensembles négligeables. § 3. Les espaces L^p_F. § 4. Ensembles mesurables. § 5. Fonctions mesurables sur tout compact. § 6. Théorèmes de convexité. § 7. Théorème de Lebesgue-Fubini.…
Livre: Intégration
Sujets : espaces L^p, ensembles mesurables, fonctions mesurables, Inégalités de convexité,

Fonds Jean Delsarte (Institut Élie Cartan); Godement, Roger; 91 p.;
§ 1. Mesures dénombrables à l'infini. § 2. Intégrales induites. § 3. Intégrales définies par des fonctions localement sommables. § 4. Théorème de Lebesgue-Nikodym. § 5. Fonctions faiblement sommables. § 6. Applications linéaires continues d'espaces…
Livre: Intégration
Sujets : mesure de Radon dénombrable à l'infini, intégrales induites, fonctions localement sommables, fonctions faiblement sommables, espaces polonais, espaces polonisables, mesures (sommes de), mesures (décomposition de),

Fonds Jean Delsarte (Institut Élie Cartan); Mandelbrojt, Szolem; 115 p.;
Chapitre I. Ensembles ouverts. § 1. Axiomes des ensembles ouverts et quelques définitions. § 2. Fonctions continues. § 3. Différentes manières de former une topologie. § 4. Suites et limites. Chapitre II. (sans titre) § 1. Espaces uniformes. § 2.…
Livre: Topologie générale
Sujets : structures topologiques, espaces uniformes, espaces complets, nombres réels,

Fonds Jean Delsarte (Institut Élie Cartan); Mandelbrojt, Szolem; 106 p.;
(Partie dactylographiée) Chapitre I. Ensembles ouverts§ 1. Axiomes des ensembles ouverts et quesques définitions. § 2. Fonctions continues. § 3. Différentes manières de former une topologie. § 4. Suites et limites. Chapitre II. (sans titre). § 1.…
Livre: Topologie générale
Sujets : structures topologiques, espaces uniformes, espaces complets, nombres réels,

Fonds Jean Delsarte (Institut Élie Cartan); Serre, Jean-Pierre; 23 p.;
§ 5. Endomorphismes des espaces vectoriels. n°1. Le module associé à un endomorphisme. n°2. Endomorphismes sur un corps de base algébriquement clos. n°3. Valeurs propres et vecteurs propres. n°4. Réduction à la forme diagonale. n°5. Propriétés du…
Livre: Algèbre
Sujets : modules sur les anneaux principaux, endomorphismes des espaces vectoriels,

Fonds Jean Delsarte (Institut Élie Cartan); Weil, André; 136 p.; 1936-07;
Topologie générale. Introduction. Observations diverses sur la Topologia Bourbachica I. Vient ensuite la Topologia Bourbachica I à proprement parler. Table des matières. § I. Introduction et scurrilités (pages manquantes). § II. Ensembles ouverts. §…
Livre: Topologie générale
Sujets : structures topologiques, espaces uniformes, espaces complets, nombres réels, espaces métriques, métrisables, espaces compacts,

Fonds Jean Delsarte (Institut Élie Cartan); Weil, André; 151 p.;
Avertissement à tout Bourbaki. Chapitre I. Du raisonnement mathématique. § 1. Analyse d'une démonstration. Les propositions. § 2. Structure de la proposition. Propriétés, relations, variables. § 3. Conseils sur la rédaction des travaux mathématiques…
Livre: Théorie des ensembles
Sujets : logique mathématique, théorie des ensembles abstraits, opérations (sur les sous-ensembles), fonctions (théorie des ensembles), produit (d'ensembles), relations (ensembles), puissance (ensembles), ensembles finis, ensembles dénombrables, ensembles ordonnés, ensembles bien ordonnés, théorie mathématique, structures,

Fonds Jean Delsarte (Institut Élie Cartan); Weil, André; 269 p.;
Chapitre I. Brouillon projet d'un précis de calcul infinitésimal. § 1. Germes et éléments. § 2. Structure des anneaux de germes et d'éléments. § 3. Algèbres locales. § 4. Points infiniment voisins. § 5. Points infiniment voisins et structure…
Livre: Groupes et algèbres de Lie
Sujets : germe de fonction, anneau local, algèbre locale, variété différentielle (calcul infinitésimal sur une), espaces fibrés, champs de formes différentielles, transformations infinitésimales, champs de formes différentielles complètement intégrables, groupes de Lie (représentations des),

Fonds Jean Delsarte (Institut Élie Cartan); 57 p.;
§ 1. Préliminaires. Ensembles étoilés et ensembles convexes. Structures vectorielles réelle et complexe. Ensembles étoilés ; ensembles cerclés ; indicatrices. Ensembles convexes. Le théorème de Hahn-Banach. § 2. Espaces vectoriels topologiques.…
Livre: Espaces vectoriels topologiques
Sujets : ensembles convexes, convexité, espaces localement convexes,
Formats de sortie

atom, dcmes-xml, json, omeka-xml, rss2