mesure de Haar : Contenus (5 total)

Donation André Weil (fonds Bourbaki, Archives de l'Académie des sciences); Weil, André; 29 p.; 1940-03;
Il s'agit de la version dactylographiée du début de l'Intégration rédigée par André Weil depuis la prison de Bonne-Nouvelle à Rouen en mars 1940. Chap. I Intégration abstraite. § 1 Théorie élémentaire de l'intégrale. § 2 Fonctions linéaires sur une…
Livre: Intégration
Sujets : intégration abstraite, mesure et intégration dans les espaces topologiques, mesure de Haar, probabilités (application aux),

Compléments Jean Delsarte (fonds Bourbaki, Archives de l'Académie des sciences); 15 p.;
Espace topologique. Fonction continue. Compacité. Produit d'espaces topologiques. Groupe. Groupe topologique. Mesure. Mesure - ensemble mesurable. Fonction mesurable. Intégrale. Obtention d'une mesure à partir d'une fonction de Carathéodory. Espace…
Livre: Intégration
Sujets : groupes topologiques, groupes topologiques localement compacts, ensembles mesurables, fonctions mesurables, fonction de Carathéodory, mesure de Radon, mesure de Haar,

Fonds Jean Delsarte (Institut Élie Cartan); Dixmier, Jacques; 37 p.;
§ 1. Mesure de Haar. 1. Mesures relativement invariantes. 2. Existence de la mesure de Haar. 3. Module. 4. Mesures dans les espaces homogènes. 5. Espaces fonctionnels remarquables. 6. Quelques bons trucs pour calculer explicitement des mesures…
Livre: Intégration
Sujets : mesure de Haar, mesures (composition de),

Fonds de l'Association des Collaborateurs de Nicolas Bourbaki (Archives de l'Académie des sciences); Schwartz, Laurent; 67 p.;
Rappel de formules sur les algèbres de Lie. Première partie : passage du local ou du global au ponctuel : groupe de Lie ---> algèbre de Lie. § 1. Définitions. § 2. Variété de transformations. § 3. Champs invariants à gauche sur un groupe de Lie. §…
Livre: Groupes et algèbres de Lie
Sujets : algèbres de Lie (définition), groupes de Lie (représentations des), germe de groupe de Lie, mesure de Haar, algèbre enveloppante (d'une algèbre de Lie), équations différentielles de Maurer-Cartan,

Fonds Jean Delsarte (Institut Élie Cartan); Dieudonné, Jean; 63 p.;
Sommaire et commentaires. § 1. Mesure de Haar. 1. Mesures relativement invariantes. 2. Existence et unicité de la mesure de Haar. 3. Propriétés de la mesure de Haar. 4. Mesures relativement invariantes sur un groupe localement compact. Modules. 5.…
Livre: Intégration
Sujets : groupes topologiques localement compacts, mesure de Haar,
Formats de sortie

atom, dcmes-xml, json, omeka-xml, rss2